|
随着大数据、云计算、人工智能等技术的发展成熟,企业级IT领域也迎来重大变革。聚焦到单个板块,如在服务器市场上,传统互联网时代,我们听到的更多是机架服务器、塔式服务器及刀片服务器。
C9 L9 K. K& ^6 F5 O( q 而在即将到来或者说已经到来的人工智能时代,我们更多的是听到AI服务器这一名词。那么,究竟什么是AI服务器,AI服务器又为何适用人工智能时代?在本文中,笔者也将解答AI服务器的这些困惑,主要涉及AI服务器的定义、优势及市场现状3方面。# T6 D- ~' E" Q
AI服务器的定义1 [% {1 R4 a0 T2 I; A J
从硬件架构来看,AI服务器主要指的是采用异构形式的服务器,表现形态多为机架式。在异构方式上,可以为CPU+GPU、CPU+FPGA、CPU+TPU、CPU+ASIC或CPU+多种加速卡。
) l9 v$ c5 l! @1 @- R* o 而在其他组成部件上,如内存模块、存储模块、网络模块与传统服务器差别不大,主要的提升便是支持更大容量的内存满足当下实时负载增加的需求,提供更多外置硬盘插槽,并广泛支持NVME/PCIE等SSD,满足数据洪流需求,网络模块主要表现为带宽增加。
7 F: ^% A' B' M 尽管AI服务器可以采用多种异构形式,但目前广泛使用的是CPU+GPU。也因此,业界在谈到AI服务器时,往往将其默认为GPU服务器。因此,在第二部分中,笔者谈到的AI服务器优势也主要为GPU服务器。/ Z9 ]- v% f J5 e: u- O {
AI服务器的优势/ n) D/ V3 ?' t' T/ v4 ?
我们都知道,传统服务器主要以CPU为算力提供者。而CPU为通用型处理器,采用串行架构,擅长逻辑计算,负责不同类型种类的数据处理及访问,同时逻辑判断又需要引入大量分支跳转中断处理,这使得CPU的内部结构复杂。也因此,CPU算力的提升主要靠堆核来实现。
" B* ^2 y3 Z7 t) i 随着云计算、大数据、AI、物联网等技术应用,数据在近几年呈指数型增长,IDC统计显示全球90%数据均在近几年产生,这便对CPU的处理能力提出考验,而目前CPU的物理工艺、核心数已接近极限,数据量却不会停止,服务器的处理能力必须提升。因此,在AI时代下,仅由CPU做算力提供者的传统服务器并不能满足需求。
- Q* b2 w% T* N) {" b/ } 不同于CPU,GPU采用并行计算模式,单卡核心数达到上千个,擅长处理密集型运算应用,如图形渲染、计算视觉和机器学习。经过几年验证,搭载GPU的服务器也被证实的确适用这个时代。' M, o0 `0 \3 i0 }, N; `. q }% s c$ w
AI服务器市场现状
6 a C- ^ w# }8 @4 v IDC全球半年度人工智能系统支出指南预测显示,2019年全球人工智能系统支出将达到358亿美元,相比2018年增加44.0%。同时,人工智能系统支出到2022年将翻一番达到792亿美元,2018年到2020年预测期内复合年增长率(CAGR)为38.0%。
; V0 D; P& |6 {+ z 这一数值也意味着,AI服务器的市场有多广。也因此,全球几大服务器厂商均紧锣密鼓部署着AI服务器。 o! W8 o9 Y5 M) b
目前,在中国市场上,浪潮的市场占有率最大,且处于绝对领先地位,份额达到51.4%,曙光和新华三紧随其后。从行业分布来看,互联网当之无愧是AI服务器的主要用户。而在GPU上,NVIDIA具有明显优势,其Tesla系列产品在AI基础设施市场占据主导地位,尤其在线下训练场景中处于垄断地位。6 E5 C M& I: |2 l- ~+ d& E
而在AI服务器上,目前性能最强的为浪潮AI超级服务器AGX-5,AGX-5是专为深度学习和高性能计算的性能扩展设计,单机在8U空间里可以配置16颗NVIDIA Tesla V100 Tensor Core 32GB GPUs,拥有10240个张量计算核心,计算性能高达每秒2千万亿次。
4 L" i+ H* ~: x8 T* W
& k9 K, t9 [) b9 `* Z |
|